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OVERVIEW

e Current work:
— Numerical Modelling of BHE (Candy He)

— Monitoring of a large Non-domestic GSHP
installation (Selvaraj Naicker)

— Modelling of Foundation Heat Exchanger
systems (Denis Fan)
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NUMERICAL MODELLING OF BHE

Model Development — A Dynamic 3D Model for BHE

This new 3D

model can:

Heat Transfer Borehole
Equation Diameter: ~ Simulate transient fluid
150 mm

transport along pipe

Borehole
Finite Volume A De;Jth‘ o
/--.,‘ Plan ! 3
Method T 1 100 m ~ Apply various

boundary conditions at
the surface.

Elevation

~ Impose initial vertical
temperature gradients
of the ground.

~ Model different layers
of rock and soil.

~ Obtain temperature
distribution along
borehole depth.

~ Examine heat transfer
below the borehole.

Fig. 2 Multi-block boundary fitted mesh. Fig. 3 Visualization of a borehole heat exchanger.
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NUMERICAL MODELLING OF BHE

e A 3D Model allows analysis of borehole temperature and heat
transfer variations with depth

e Modelling fluid circulation allows short-timescale response to be

modelled
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BOREHOLE FIELD RESPONSE

e Modelling the borehole components is important when trying to capture
short timescale effects

e Modelling interaction and axial heat transfer is important when trying to
capture long timescale effects

g-function from 3D Model
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MONITORING OF A LARGE NON-DOMESTIC GSHP SYSTEM

DMU Hugh Aston Building System:
e A multi-use building (15,607 m?
e Monitored since openingin Jan. 2010

e  GSHP system provides all AHU and FCU cooling (360 kW peak)
and all underfloor heating (330 kW peak)

e Has Four Water Furnace two-stage reversible heat pumps

e 56 x100m deep borehole heat exchangers, 125mm diameter.
30 /s peak flow

Warm Water Manifold

Chilled Water Manifold

DD T
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SYSTEM OPERATION

S/l
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Chill water Header -Flow (l/s)

» Three loops — Ground , warm water , chill water — Three variable speed circulating pumps

* Flow rate depends on number of heat pumps under operation

» Four heat pumps — Eight compressor stages — number of stages depends on temperature
difference in header and set point

* Chill water header — inlet temp. and outlet temp. varies between 5to 7.5and 6to 8.5
respectively, flow rate varies between 7 to 17 |/s

» Operating cycle length is longer during day says higher cooling load
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GROUND TEMPERATURES
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— Daily Mean Ground loop fluid Temp.(°C) — Initial Ground Temperature(13.2°C) Daily Mean Atm. Air Temp.(°C)

» Cooling loads predominate.
» Ground loop temperature swings by 8K.
« External air temperature swings by 28K.

* There is some slight increase in temperature in the second year.
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MONTHLY PERFORMANCE
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ANNUAL PERFORMANCE
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VARIATIONS IN EFFICIENCY

Three Heat Pumps (22.5 Iis)
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FOUNDATION HEAT EXCHANGER (FHX) MODELLING

e FHX are new type of ground heat OAK
exchanger for residential buildings. “RIDGE

National Laboratory
e Makes use of excavations created for
basement, foundations or external
services to accommodate horizontal
closed loop pipes.

e FHX can significantly reduce the
installation cost as no additional
excavation is required.

e Detailed numerical models have been
developed by DMU in a US
Department of Energy funded project
in partnership with OSU and Oak Ridge
National Lab

@Bﬁ?’fé&ﬁ?ﬁ Successfully shaping our world




FHX EXPERIMENTAL HOUSES

e Four low energy residential buildings
have been constructed at Oakridge,
Tennessee, USA.

e Two of them have FHX and heat
pumps and have been extensively
instrumented.

e Data collected over a one year
period has been use to validate a
number of design tools and
simulation models
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DYNAMIC THERMAL NETWORKS (DTN)

e Two approaches —a 3D Finite Volume Model and a
Dynamic Thermal Network Model

e The Dynamic Thermal Network approach:

— A form of response factor method in which conduction heat
transfer processes are represented as a network

— Conduction fluxes are conceived as the sum of an admitted
and a transmitted component.

— Can be applied to any combination of multi-layer surfaces of
arbitrary geometry.

— Much more efficient that a 3D numerical model

e The method was originally developed by Claesson
and Wentzel at Chalmers University, Sweden.
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DTN GENERAL FORMULATION

e We consider the modelling of FHX as a 3 surface DTN
problem.

e |n the FHX model surface 1 is the basement, surface 2 is the
ground surface and surface 3 is the pipe surface

e L 0 A S @O i %()
Q2(t)

T (t) | @ O
| QI( ) <d= = % O
' Basement Floor O &

Ny

| v /) 4
: \ / WARLECT0
i Insulation .
| Deep Soil Qs(t)
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DTN GENERAL FORMULATION

Boundary fluxes are defined as the sum of admitted and
transmitted components. For a three-surface problem:

Q)=K, -[T.()=-Tia(®)]+ K, [Tra(®) =T 21()]+ K5 -[T1a(t) =T 31 (t)]
Q,(t) =K, [T, (1) =T 2a(t)]+ K, -[T21(t) =T 12()]+ Koy - [T 23() = T 32 ()]

Q,(t) =K, [T, (1) =T3a()]+ K5 - [T31() ~Tis()]+ Koy - [T32(t) = T 23(1)]

? ?

Absorbed component Transmitted
components
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DTN GENERAL FORMULATION (2)

Q,(t) @n ) =Tia(®)]+ K, [Tr2®) =T 2a(®)]+K,; [T (t) =T 3 (t)]

Q, (1) 2 () =T 2a()]+ K, -[T21() =T r2()]+ K, [T 25(t) =T 32(t)]
Q,(t) 3 () =T3a(®]+ K, [Ta(t)=Tua(®)]+ K,s - [Ta2(t) =T 23 ()]

3 Surface Conductances
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DTN GENERAL FORMULATION (2)

Q,(t)=K, [T, (t)- Tla(t) .le(t) Tzl(t) ’Tm(t) T31(t)
Q,() =K, [T,(t)- Tza(t) T21(t) T12(t)+K23 [Tz3(t) T32(t)]

Q,(t) =K, [T, (1) =T3a )]+ K5 - [T31() = Tis(®)]+ Koy - [T32(t) = T 23(1)]

3 Transmittive Conductances
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DTN GENERAL FORMULATION (2)

Q,(t) = K, [Tia()=Ta(®)]+ K, [Tis(t) =T ()]

Q,(t) =, [T, (1 —T2a(®OM K, -[T21(t) =T i2()]+ Koy - [T 23() = T 32 ()]

:

Q,(t) =K, -[T,() =T sa(®D+ K,; - [T () =T ia()]+ K,y -[T32(t) =T 23(1)]

T.(O)-Tu®]=T,O~ [ &, T,(t-)dz [n=1,2,3]

t

Current Boundary Temperature
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DTN GENERAL FORMULATION (2)

Q,(t) = K, [Tia()=Ta(®)]+ K, [Tis(t) =T ()]

Q,(t) =, [T, (1 —T2a(®OM K, -[T21(t) =T i2()]+ Koy - [T 23() = T 32 ()]

:

Q,(t) =K, -[T,() =T sa(®D+ K,; - [T () =T ia()]+ K,y -[T32(t) =T 23(1)]

T.(O)-Tu®]=T,O~ [ &, T,(t-)dz [n=1,2,3]

t

Absorption Weighting Functions
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DTN GENERAL FORMULATION (2)

Q,(t) = K, [Tia()=Ta(®)]+ K, [Tis(t) =T ()]

Q,(t) =, [T, (1 —T2a(®OM K, -[T21(t) =T i2()]+ Koy - [T 23() = T 32 ()]

:

Q,(t) =K, -[T,() =T sa(®D+ K,; - [T () =T ia()]+ K,y -[T32(t) =T 23(1)]

T.(O)-Tu®]=T,O~ [ &, T,(t-)dz [n=1,2,3]

t

Temperature History Backwards to time 1
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DTN GENERAL FORMULATION (2)

Q,(t) = K, -[T,(t) T 1a(t)] + K( K1
Qu(t) = K, [T, (1)~ Ta )] + K Kz

Q,(t) =K, -[T,(t) =T 3a(t)]+ KC [T () =T ()X KL T 32(t) - T 23(t)

d

[Tam () =T um(®)]= | s [T, (t=2) =T, (t-1)]d7

t

Transmittive Weighting Functions

1

n=123:m=1273
N+M
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DTN GENERAL FORMULATION (2)

Q,(t) = K, -[T,(t) T 1a(t)] + K( K1
Qu(t) = K, [T, (1)~ Ta )] + K Kz

Q,(t) =K, -[T,(t) =T 3a(t)]+ KC [T () =T ()X KL T 32(t) - T 23(t)

d

[Tam () =T um(®)]= | s [T, (t=2) =T, (t-1)]d7

t

Temperature Histories Backwards to time 1

n=123m=123
N+m
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DTN DISCRETE FORMULATION

e The formulation can be expressed in discrete form in an exact
way for piecewise linear varying boundary conditions.

e For the absorptive weighting function the discrete weighting

factor series (length p) can be found from a step response
heat flux calculation:

0..(¢)-0,,(@) noles
— 0
p = @ =(vh—h),@=vh
v=1,...,p |

e Similarly for the transmitted weighting factors:

_ _ ‘n=123m=123:n=m]|
_ Qun(@)=Qu(0) p = (vh—h), & —vh

Knm
v=1,..,p0
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DTN NUMERICAL IMPLEMENTATION

Generation of the Step Response

e Available approaches:

— Analytical solutions for simple geometries, e.g. Multi-layer
walls (Claesson, 2003).

— Use a Finite Difference Method with fixed time steps for
more complex geometries (Wentzel, 2005).

e Qur approach:

— Apply Finite Volume Method (FVM) using 2D and 3D FHX
meshes and variable time steps (2"9 order accurate).

~ dmu.ac.uk
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EXAMPLE ABSORBTIVE WEIGHTING FUNCTIONS
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EXAMPLE TRANSMITTIVE WEIGHTING FUNCTIONS
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Q,, ~6years ~ 16 hours K,  ~15hours
Q,; ~6years ~ 25 hours Kz ~ 13 hours

Q,; ~5years ~ 25 hours K,3 ~ 3 hours
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DTN WEIGHTING FACTOR CALCULATION

Weighting Factor Reduction

e Temperature histories for FHX can
be up to a hundred thousand
values, e.g. for 1 hour intervals.

e Approx. 2 days to complete an
annual FHX simulation.

e Wentzel’s (2005) reduction strategy I
was implemented to reduce this |
computation cost — time intervals ok
are progressively doubled. N k

e More aggressive reduction
strategies have been developed to m"
improve efficiency further mﬁimﬁmmww e L1111

ime Step (every 15 min)
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DTN METHOD VERIFICATION

500 400 r5
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200 \, ' ] 4
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» Acceptably Close agreement between the DTN prediction
& results from the Finite Volume solver.

 Reduction of the weighting factors introduces insignificant
errors
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SUMMARY

e DTN allows complex 3D multi-layer components to be
simulated efficiently

e Practical implementation of the DTN approach has
required:
— Automated mesh generation
— Variable time step numerical calculations to find the step response
— Aggressive response factor reduction

e The result is that annual simulation of the 3D FHX geometry
can be completed in less than 10 seconds

e DTN has great potential for heat exchangers such as piles:
— Surface 1 = pipe
— Surface 2 = exposed ground
— surface 3 = below building

LEICESTER
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THANK YOU FOR LISTENING

sirees@dmu.ac.uk www.iesd.dmu.ac.uk
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