GSHPA Thermal Pile Standard

Ground Source Heat Pump Association

Duncan Nicholson

Technical Seminar

Wednesday 16 November 2011 Homerton College, Cambridge University

Thermal Pile Standard – sub committee

Duncan Nicholson (Chair) Arup Nic Wincott NeoEnergy **Peter Smith** Cementation **Tony Amis** GIL **Bullivant** / **Chris Wood** Kenichi Soga **Cambridge University** Fleur Loveridge **Southampton University GSHPA** -Jake Salisbury (Secretary)

GSHPA -Thermal Pile Standard overview

Contents List

- Sec 1 Preamble (as in the Vertical Borehole Standard)
- Sec 2 Regulations and governments (as VBS)
- Sec 3 Contractual setup
- Sec 4 Training requirements (Link with FPS for piles)
- Sec 5 Design
- Sec 6 Thermal response
- Sec 7 Pile materials and methods
- Sec 8 Pipe Jointing (as VBS)
- Sec 9 Thermal pile concrete
- Sec 10 Loops installation
- Sec 11 Pressure testing
- Sec 12 Indoor piping /values (as VBS) Header pipes
- Sec 13 Thermal Transfer fluids (as VBS) High loop temps use water as Europe?
- Sec 14 Design drawings
- Sec 15 Monitoring and checking
- Sec 16 Alterations

Appendices

- A Design Geotechnical design issues
- B Thermal response Effect of large diameter piles
- C Thermal pile concrete Concrete thermal conductivity
- E Loops Installation Methods and scratching

Section 3 Contractual responsibilities

- Many parties results in division of responsibilities.
- ICE Specification for Piling and Embedded Retaining Walls (SPERW) is the starting point
 - "Engineer" design
 - "Contractor" design
 - Standardise terms

Contractual responsibilities

"Engineer" design piles

Denotes parties with responsibilities set out in SPERW (2007)

Contractual responsibilities

Contractor" design piles

Denotes parties with responsibilities set out in SPERW (2007)

Section 5 Design requirements

Thermal effects complicate traditional pile design

Section 5 Geotechnical Pile design – heating pile

ARUP

Geothermal Pile – Geotechnical Design Process

1. Pile design for structural loads

- Normal F of S > 2.0 to 3.0 (ULS Design)
- Consider normally consolidated clays as –ve skin friction.

2. Agree temperature range with GSHP Designer

- Interface must not freeze. Pile/Soil interface eg +2 to +30°C.
- Number of thermal piles free head / Fixed head
- 3. Assess pile expansion and ground movements (Undrained)
 - Free head and fixed head (SLS design)
- 4. Assess concrete stresses dead load and thermal
 - Max concrete stress < Concrete strength $(q_c)/4$
- **5.** Consolidation / Quasi thermal creep effect
 - Check settlement

6. Check live loads and thermal cyclic effects

- Treat thermal loads as cyclic live loads - 50 annual cycles

Combined load and thermal test - Lambeth College, London (2007) Bourne-Webb et al, (2009) Geotechnique

- Cementation / GIL / Cambridge
- Pile loading test undertaken incorporating cyclic temperature effects
- Optical fibre sensor (OFS) system
- Conventional vibrating-wire strain gauges (VWSG), thermistors and external load control elements

Lambeth College - Geotechnical Assessments

Rapid (Undrained0 response –

- Expansion of pile - Lambeth College

Long term (Drained) response –

- Dissipation of pore pressure

Quasi Creep effect

- Reduction in Preconsolidation pressure with increased temp.

Cyclic thermal loading

- Annual thermal cycle

Lambeth College Pile Test

Layout and Instrumentation

Reinforcement bar

Vibrating-wire and temperature OFS
 Glued strain and temperature OFS

C Clamp stain and temperature OFS

D

Polyethylene - 2 loop

Temperature-only OFS

VWSG set

VWSG set

Per

6000

Pile Temp and head movement

- Design load -1mm settlement
- Cooling 3mm change
- Heating 2mm change
- Little heave during heating

Lambeth College Modelling using DYNA and **OASYS PILE**

- **Both external load and heating/cooling cycle applied** to pile
- LS-DYNA and Oasys PILE used to model behaviour

Reinforcement bar

O Polyethylene

त

Pile Head Load

Lambeth College – Pile Loads

Fixed pile head generated large axial load

Lambeth College – Modelling pore pressures (In progress)

- LS-Dyna calculates excess pore pressures due to:-
 - Undrained pile loading 1200kN
 - Thermal effects

Dissipation of water pressures allows consolidation

Section 5 - GSHP Design of thermal piles

- Fleur Loveridge has addressed issues
- Pile Modelling Assumes
 - line source piles up to 0.3m Use standard packages
 - Uniform temperature source larger piles Use Pile Sim or Orphius
 - Finite element models
- Number of loops in pile
- Low thermal conductivity concrete similar to soil
- High thermal conductivity concrete reduces thermal resistance

Lab Testing – pore pressures

 Difference in soil/porewater thermal expansion generates excess pore pressures on heating

Discussed in literature:

- Campanella & Mitchell (1968)
- Hueckel, Francois and Laloui (2009)

 α_s = thermal expansion of mineral solids

 α_{w} = thermal expansion of soil water

 α_{st} = physico-chemical structural volume change

$$\Delta u = \frac{n \, \Delta T \, (\alpha_s - \alpha_w) + \, \alpha_{st} \, \Delta T}{m_w}$$

(Campanella & Mitchell, 1968)

 $m_v = soil compressibility$

Thermal-creep effect on preconsolidation

- Heating reduces preconsolidation pressure (σ_p) and stiffness
- Creep ignored in OC clays NOT in NC clays. London Clay is very

ARUP

Cyclic loading

- Cyclic thermal load caused by heating and cooling pile
 - Pu = 3.6MN
 - Po = 1.2MN
 - Pc = 0.7MN
 - Pc/Pu = 0.7/3.6 = 0.2
 - Po/Pu = 1.2/3.6 = 0.33

Poulos Stability Diagram

Section 6 – Response Tests for thermal piles

- How Long should the test take?
- Consider Loops on Centreline or round perimeter
- Thermal conductivity of concrete relative to soil
- Temperature at soil concrete interface
- Response test shallow depth
 - Part of Geotechnical Investigation
 - Part of pile test eg reaction pile
- Combine with strain gauges mid depth thermal stress in piles

Section 7 Pipe Materials

Plastic pipes - Bend Radius - PEX at 20°C

- 15/??mm -- ??m pile Can a 15mm PEX pipe fit in a 0.45m pile?
- 20/1.9 mm 0.6m pile (20cm)
- 25/2.3mm 0.75m pile. (25cm)
- 32/2.9mm 0.90m pile (32cm)
- 40/3.7mm 1.0m pile cage (40cm)

PE100 or PE100+ at 20°C

- 15/??mm -- ??m pile
- 20/1.9 mm 1.0m pile (40cm)
- 25/2.3mm 1.2m pile. (50cm)
- 32/2.9mm 2.2m pile (100cm)
- 40/3.7mm N/A
- PEX bends to about half the radius of PE100 or PE100+.
- Colder temperatures increase min bend radius
- PEX is more expensive but does not need U bends at the top and bottom of loops.

Section 10 Loop Installation

- Loops on long cages Long tremie pipe
 - Inside cage
 - Outside cage
- Loops on short cages Short Tremie

Section 10 Borehole Loops installation

Historically – Europe

- Long cages
- Internal pipes with looped pipes
- In London dry bored piles
 - Use short cages
 - Use borehole U-tubes
- Paddington Basin GIL and Cementation
 - Two pairs of U-tubes

West End Green – Use of lantern spacers (2010)

Short or long tremie – **Scratching test (2010)**

Test set-up

Photos from test

Bar weights prior to testing

U bend after test

Upper pipe after test

Lower pipe after test

Scratch depth measurement on 32mm pipes

Assessment of damage

- Par off pipe until scratch just disappears
- Measure pared width (2C)
- Calculate scratch depth

- **2C** chord length (mm) measured;
- \mathbf{T} Depth of the scratch (mm) calculated
- R radius of the pipe measured Conclusions
- Vertical pipes <1mm scratches</p>
- Splayed pipes 1 to 2mm scratches

CFA Piles, Cambridge (Bachy Web site)

- Pile design Motts
- Pile Contractor Bachy
- Loop design / build GIL
- CFA piles (600mm dia)
 150 No up to 25m depth
- Loops 4 pipes x 32mm dia
- Pushed with 1 x T32
- Heating 188kW
- Cooling 117kW

Plunging used T32 bar + 4 pipes (2 loops)

Cage and header pipes

Section 11 Pressure testing

Checks for loop leakage

- During installation
- Contract interfaces

Pressurise loops during installation

- European contractors pressurise loops during installation
- UK does not do this?

Relevance of pressure test in concrete

- Pipe relaxation at high pressures
- Stiff response increases test sensitivity
- Pipe pressure can increase Pile concrete heats water expansion

Section 15 Monitoring and triggers

- No freezing at Soil/Pile interface
- Little data on relationship between circulation fluid temp and interface temperature
- Adopt conservative minimum temperature from heat pump
- Monitor
- Use trigger values
- Under discussion

Keble College - Oxford

Thermal Walls – Crossrail Dean Street Box

Crossrail - Ground temperatures at Oxford Street

ARUP

Diaphragm wall Dyna Model - Temperature effect on wall

PLAN VIEW

Conclusions - Thermal pile standard advances

Contents List

- Sec 1 Preamble (as VBS) - Sec 2 Regulations and governments (as VBS) - Sec 3 Contractual setup Training requirements (Link with FPS for piles) - Sec 4 - Sec 5 Design - Sec 6 Thermal response - Sec 7 Pile materials and methods Sec 8 Pipe Jointing (as VBS) - Sec 9 Thermal pile concrete Sec 10 Loops installation - Sec 11 **Pressure testing** - Sec 12 Indoor piping /values (as VBS) – Header pipes - Sec 13 Thermal Transfer fluids (as VBS) – High loop temps – use water as Europe? Sec 14 **Design drawings** Monitoring and checking - Sec 15 Sec 16 Alterations

Thank you for your attention

Any Questions?

Thank you!

References

- Campanella, R.G. & Mitchell, J.K. (1968) Influence of temperature variations on soil behaviour, Journal of the Soil Mechanics and Foundations Division, 94(SM3), ASCE, pp 709-734.
- Boudali, M., Leroueil, S. & Srinivasa Murthy, B.R. (1994) Viscous behaviour of natural clays, Proc. 13th Int. Conf. Soil Mechanics and Foundation Engineering, New Delhi, pp 411-416.
- Eriksson, LG, (1989) Temperature effects on consolidation properties of sulphide clays, Proc. 12th Int. Conf. Soil Mechanics and Foundation Engineering, Rio de Janeiro, Vol. 3: pp 2087-2090

Design requirements – design charts

Design basis

- Thermal pile load test
- Computer model
- Typical temperature range to consider
 - ± 5 to 10°C daily
 - $\pm 20^{\circ}$ C seasonal
- Model of varying length/diameter of piles and study effect on concrete stress, FOS.

Further work

Ongoing research provided in Appendices to the Thermal Pile Standard

- Soil and concrete thermal conductivity
- Thermal response test interpretation for larger diameter piles
- Change in soil behaviour / shaft friction / concrete stress with temperature variations
- Pile / soil interface zone temperature and thermal conductivity
- Knowns and unknowns in producing the design guidance clearly stated
- Several further revision cycles required to finalise the document with the T&SC

Conclusions

- Thermal Piles are established in UK.
- Thermal Pile / Heat pump systems compete with gas boilers, biomass, CHP.
- Thermal pile installation methods developing.
 - Need to check installation damage.
- Geothermal design based on borehole loops guidance.
- Geotechnical design developing.
- Ownership of design responsibilities unclear.
- Few designers and contractors able to tender for work.
- Thermal walls Design processes under development
 - Basement insulation, thermal stresses on wall moments, earth pressures.

Design requirements – laboratory testing

Thermal conductivity - concrete

- Soil, concrete and interface zone
- Eurocode or ASTM methods (eg Guarded hot plate)

